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Boundary Conditions for Lattice 
Boltzmann Simulations 
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A heuristic interpretation of no-slip boundary conditions for lattice Boltzmann 
and lattice gas simulations is developed. An improvement is suggested which 
consists of including the wall nodes in the collision operation. 
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1. I N T R O D U C T I O N  

Cornubert et  al. (1) have recently examined boundary conditions for lattice 
gas simulations of fluid flow. They show that for the parallel flow 
configuration, application of the "bounce-back" boundary condition is, to 
first order, equivalent to a no-slip wall halfway between the first row of 
nodes in the fluid and the first row outside. 

Another discussion of appropriate boundary conditions for lattice gas 
models was provided by Lavallee et  al. (2) On the basis of results of numer- 
ical simulations of a developing flow they suggest that the bounce-back 
condition is not the only one appropriate, but that a mixture of some 
fraction of "slip" can also give no slip at long times. Unfortunately, their 
work is marred in that the flow that they simulated has zero shear stress 
as its long-time asymptotic wall condition. Thus, no matter what fraction 
of slip they used, they would always get no motion at the boundary at long 
times. 

In this report, the same result as obtained by Cornubert et  al. is 
developed by examining the symmetry near the boundary of simple flows, 
and a new technique is suggested that should provide a higher order of 
accuracy. 
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2. THEORETICAL D E V E L O P M E N T  

The usual method of applying a no-slip condition is reviewed with 
reference to Fig. 1. The usual approach has been direct reflection of 
particles arriving at the wall. Particles will arrive at node A from nodes B 
and C. Whenever a particle going in direction 3 arrives from node B, a 
direction-6 particle is sent back to node B the following time step, and 
similarly for direction-2 particles from node C. Consequently, the time 
average of the population at node A has an equal number of direction-3 
and direction-6 particles and an equal number of direction-2 and -5 
particles, and so the average velocity at node A is zero. This result is the 
basis of the logic of using direct reflection at the walls. 

The same technique has been used for lattice Boltzmann simulations, 
and it is in this context that the present argument is developed. As an 
illustrative example, suppose that there are no gradients in the streamwise 
direction and the velocity at the location of nodes B and C is such that the 
distribution function of 3-direction particles arriving at node A from B has 
a value of 0.19, while that of the 2-direction particles arriving from C is 
0.17. Using the "bounce-back" algorithm, the distribution function of 
6-direction particles leaving node A will be 0.19 and that of the 5-direction 
particles will be 0.17. So, from the point of view of nodes B and C, they are 
receiving particles from a population identical to their own, but traveling 
in the opposite direction. This is clearly different from the intended result 
of having a no-slip wall at A. 

The alternate interpretation pointed out by Cornubert et al. is that the 
"bounce-back" condition corresponds to a zero-velocity boundary condi- 
tion that is applied at a wall halfway between nodes A and B-C.  The 
velocity at A in the opposite direction is the symmetric reflection of the 
state at B - C  through the no-slip wall halfway between. This is a major 
improvement in the understanding of these simulations that permits use 
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Fig. 1. Wall boundary condition schematic. 
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of the same general algorithm and gives much improved accuracy in the 
interpretation of the flow near the walls. 

An additional improvement is available, however. It will be illustrated 
through a discussion of the meaning of the nonequilibrium contributions to 
the distribution functions. 

In the usual discussions of the lattice Boltzmann method, the terms 
equilibrium and nonequilibrium are used to indicate two contributions to 
the values of the particle density distribution functions. In terms of the flow 
physics, however, these terms refer tothe contribution of velocity gradients. 
For steady uniform flow, the state of all of the nodes is the same, equal to 
the equilibrium distribution given by the usual formulas. When there are 
velocity gradients, the distribution functions are no longer the equilibrrium 
values. In this situation, the particle population arriving at a node will 
have contributions from neighborhoods having higher and lower velocities 
than the nodal velocity. The collision operator, representing the action of 
viscosity, operates on the deviations of the populations from their zero- 
gradient values and moves them toward the equilibrium values. For high 
viscosity, the nonequilibrium values are adjusted very little, so that the 
momentum deficit or excess carried by the particles can propagate through 
a given node to the next neighbors. Conversely, for low viscosity, the 
operator moves the nonequilibrium contribution strongly toward zero. 

Returning now to the boundary condition illustration, the remaining 
problem with interpreting the bounce-back condition as a wall halfway 
between the node rows is seen: The populations coming from nodes A and 
being received by the nodes at B-C, while corresponding to zero velocity 
halfway between, will not in general carry accurate gradient information. 
This procedure will be first-order accurate, and in case the velocity gradient 
is not changing, as for plane Couette flow, will be completely accurate. 
However, for cases where the velocity gradient is not constant, as in 
Poiseuille flow, second-order errors will remain. 

A more accurate alternative is proposed as follows: The boundary is 
kept coincident with the first line of nodes, rather than being halfway 
between. For the boundary nodes, after the propagation step, the distribu- 
tion functions of the directions complementary to those of arriving particles 
are set equal to the arriving distribution functions. This sets the normal 
velocity to zero. The remaining directions then have their distribution 
functions set to the average of the incoming directions, thus setting the 
tangential velocity to zero. During the collision phase, the collision 
operator is applied to the boundary nodes as well as to the fluid nodes, and 
the resulting distribution functions are then propagated normally in the 
next cycle. 
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3. N U M E R I C A L  R E S U L T S  

The improvement achieved with this technique is illustrated in the 
following numerical example. These results were calculated with a one- 
dimensional simulation of plane Poiseuille flow. Periodic boundary condi- 
tions are applied in the streamwise direction, except that a body force 
representing the pressure gradient is also applied in this direction, as 
practiced by Succi et a/. (3) The symmetry of the flow was not exploited, 
i.e., the entire profile was simulated from one wall to the other. The 
collision operator was constructed in accordance with the FHP-II seven-bit 
model (4~6) at an average density per site of 0.18. The simulation was started 
with all of the densities set to the average density, and the model operated 
until steady state was reached, from 3000 to 6000 iterations, depending on 
the number of lattice points. The average velocity was then calculated by 
integrating the velocity across the flow. 

The calculated velocity profiles near the walls are plotted in Fig. 2. 
Each figure contains two curves, one being the lattice Boltzmann results for 
that run and the other being a parabola constructed using the average 
velocity for that run. Figure 2a was calculated using the proposed new 
boundary condition, Fig. 2b with the bounce-back condition and the older 
interpretation of the wall at the node A line, and Fig. 2c with the wall 
moved to the midplane between the first and second nodes. The problem 
with the bounce-back condition is apparent, as is improvement occasioned 
with either of the other mcthods. The difference between the reinterpreted 
bounce-back and the new method is more clearly seen in Fig. 3, which 
shows the relative error in the velocity for the three boundary conditions. 
Even though the reinterpreted bounce-back (Cornubert et al.) and the new 

0,1 " t -  . . . .  I . . . . .  l ,  , , , , I  . . . . .  J . . . . .  J . . . .  

~x 4 

; -0.2 I ~ 

r . ' [ - -  4)--- Proposed Boundary Condition 

, ,' - -~ - Bounce-Back Condition 

- 0 . 4  

- 0 . 5  
0 3 6 9 12 15 18 

Distance fl-om Wall 0atfice units) 

Fig. 3. Relative error in velocity for various boundary condition implementations. 
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Table I. Wall Shear Stress (Lattice Units x l000 )  Calculated by 
Momentum Change and Velocity Gradient for Three Boundary Conditions 

for Mesh Sizes 
of 39 and 78 

Wall collision Bounce-back Reinterpreted bounce-back 

39 78 39 78 39 78 

Momentum 1.84 3.59 1.84 3.59 1.83 3.56 
Velocity gradient 1.89 3.69 0.944 1.85 1.96 3.87 
Difference 2.7 % 2.8 % 49 % 49 % 7.1% 8.7 % 

method are much better than the older interpretation of bounce-back, the 
new method is superior adjacent to the wall. 

The interpretation of these results is consistent with the discussion of 
velocity gradients. The drag on the walls can be calculated using two 
methods. In the first, the momentum difference between the particles 
arriving and those leaving the wall is calculated. In the second, the velocity 
gradient at the wall is calculated and multiplied by the viscosity to give the 
shear stress. In principle, both methods should give the same result, which 
should also be consistent with the overall force on the system given by the 
product of the pressure gradient and channel width. Using the momentum 
difference method, each of the boundary implementations produces a wall 
shear stress in accordance with the imposed pressure gradient, to within 
several percent. However, when the velocity gradient method is used, the 
calculated shear stress does not match that calculated from the momentum 
change, by nearly 50% in the case of the bounce-back condition. This is 
shown in Table I, where the differences between the two shear stresses are 
given for each of the three boundary implementations. As can be seen, the 
reinterpreted bounce-back (i.e., wall halfway between node rows) is not as 
good as the new method of applying the collision operator at the wall 
nodes. The improvement results because applying the collision operator at 
the wall correctly applies the effect of viscosity and changing velocity 
throughout the calculation domain. 

Incidentally, some of the difference between the momentum and 
velocity gradient methods may be attributed to the evaluation of the 
viscosity. Here the value was calculated from the theoretical kinematic 
viscosity and the real density based on the lattice used. A slightly different 
value would be obtained were the density based on an infinite lattice 
without edge effects. 
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4. CONCLUSION 

Application of heuristic reasoning has led to the conclusion that the 
usual bounce-back boundary condition corresponds to a no-slip wall 
halfway between the row of fluid nodes and the row where the condition 
is applied. This is in agreement with the formal theoretical development of 
Cornubert et  al. m The logic has been extended to suggest an improvement 
which accurately represents the viscosity and velocity gradients to the edges 
of the flow domain. The suggested technique returns the wall location to 
the first row of nodes. It involves application of the relevant symmetry 
conditions to assure zero normal and tangential velocity at the walls 
followed by application of the usual collision operator to the wall nodes. 
The proposed method is shown through a numerical example to give a more 
accurate near-wall velocity than the interpretation of the bounce-back 
condition given by Cornubert. 

Although this method is discussed in the context of lattice Boltzmann 
simulations, it is expected that a similar approach could be applied to 
lattice gas simulations with equal effect. 
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